
BCS 371
Mobile Application

Development I
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2024 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 State

 State Hoisting

 ViewModel

 Repository

 Dependency Injection

© 2024 Arthur Hoskey. All
rights reserved.

mutableStateOf and remember

mutableStateOf and remember

 mutableStateOf
◦ Creates an observable type integrated with the compose runtime.

◦ Any changes to this observable type will trigger a recomposition of any
composable functions that read the observable's value.

◦ This means that it will send out notifications when its value changes.

 remember
◦ The variable's value is saved through recomposition.

 For example:

var num by remember { mutableStateOf(0) }

© 2024 Arthur Hoskey. All
rights reserved.

mutableStateOf creates an

observable type. This is

then given to remember.

0 is the default value

for the variable

mutableStateListOf

mutableStateListOf

 Similar to mutableStateOf except it operates on a list.

 mutableStateListOf will also trigger a recomposition if an add,
remove, update, etc… is done on the list (this will not happen
with mutableStateOf).

 It differs from mutableStateOf since mutableStateOf only triggers
a recomposition if the list's object reference changes.

 Examples for creating a mutableStateListOf:

var myList : List<String> = listOf("a", "b", "c")
var obsList = remember { myList.toMutableStateList() }

Or

var obsList = remember { mutableStateListOf("a", "b", "c")}

© 2024 Arthur Hoskey. All
rights reserved.

Create from an

existing list

Put values in

directly

State Hoisting

 Now on to state hoisting…

© 2024 Arthur Hoskey. All
rights reserved.

State Hoisting

State Hoisting

 A pattern of moving state to a composable's caller.

 The goal is to make a stateless composable.

 Composables that have state are less reusable and
harder to test.

 If the state is "decoupled" in this manner it makes it
easier to make changes to the app.

 Taken from:

https://developer.android.com/jetpack/compose/state

© 2024 Arthur Hoskey. All
rights reserved.

https://developer.android.com/jetpack/compose/state

State Hoisting

State Hoisting

 State should be passed down.

 Events should go up.

 Picture taken from:

https://developer.android.com/jetpack/compose/state

© 2024 Arthur Hoskey. All
rights reserved.

HelloContent has

parameters where the

"state" is passed in

(this makes HelloContent

more resusable)

https://developer.android.com/jetpack/compose/state

State Hoisting Example - Text

State Hoisting Example - Text
// State is NOT hoisted

@Composable

fun ShowMessage() {

 var message by rememberSaveable { mutableStateOf("") }

 Text(text="$message")

}

// State Hoisted (state of Text in calling function)

@Composable

fun ShowMessage() {

 var message by rememberSaveable { mutableStateOf("") }

 ShowMessage(message)

}

@Composable

fun ShowMessage(m: String) {

 Text(text="$m")

}

© 2024 Arthur Hoskey. All
rights reserved.

ORIGINAL

STATE NOT

HOISTED

Text and its state

are defined in the

same function

UPDATED

STATE HOISTED

Split into two

function. The Text's

state has been

hoisted up to the

calling function.

ShowMessge(String)

is easily reusable

since it does not

store any state.

Pass state variable to the

new function where the

Text is now defined

Add a new function that takes

the state as a parameter. The

Text is now here, and it uses

the parameter in its definition.

State Hoisting Example - TextField

State Hoisting Example - TextField
@Composable

fun ShowTextField() {

 var data by rememberSaveable { mutableStateOf("") }

 TextField(

 value = data,

 onValueChange = { data = it }

)

}

@Composable

fun ShowTextField() {

 var data by rememberSaveable { mutableStateOf("") }

 ShowTextField(data, onDataChange = {data=it})

}

@Composable

fun ShowTextField(d:String, onDataChange: (String)->Unit) {

 TextField(

 value = d,

 onValueChange = onDataChange

)

}

© 2024 Arthur Hoskey. All
rights reserved.

TextField and its

state are defined in

the same function

The TextField's

state has been

hoisted up to the

calling function

Pass both the state and the function

reference used by onValueChange

TextField uses the

parameters in its definition

ViewModel

 Now on to ViewModel…

© 2024 Arthur Hoskey. All
rights reserved.

ViewModel

ViewModel

 One of the new Android Architecture Components.

 Used to store data that will be retained through a
device configuration change.

 Each screen should have its own ViewModel.

 Suggest using API 28 or higher.

 Need Gradle dependency to make it work (on an
upcoming slide).

© 2024 Arthur Hoskey. All
rights reserved.

ViewModel – Gradle Dependencies

 Add the following to build.gradle (lower-level file)

dependencies {
 ...

 var lifecycle_version = "2.6.2"

 // ViewModel

 implementation("androidx.lifecycle:lifecycle-viewmodel-compose:$lifecycle_version")

 implementation("androidx.lifecycle:lifecycle-viewmodel-ktx:$lifecycle_version")

}

Check this link for latest dependencies:

https://developer.android.com/jetpack/androidx/releases/lifecycle

© 2024 Arthur Hoskey. All
rights reserved.

Reminder!

Make sure to sync the Gradle file

with the project after changing

dependencies

https://developer.android.com/jetpack/androidx/releases/lifecycle

ViewModel Overview

ViewModel Overview

 The ViewModel stores data used by the UI.

 The Text composable refers to a variable on the view
model.

 When the variable on the view model is updated, the Text
composable is recomposed and will display the new value.

© 2024 Arthur Hoskey. All
rights reserved.

ViewModel

var id
mutableStateOf

var phone
mutableStateOf

var name
mutableStateOf

Composable Function

Text Composable
(viewModel.name)

UI is notified of changes when

mutableStateOf var is updated

Text Composable
(viewModel.id)

Text Composable
(viewModel.phone)

Observe mutableStateOf Variable

Observe mutableStateOf Variable

 mutableStateOf variable - Observable data holder.

 This variable sends out notifications when its data changes.

© 2024 Arthur Hoskey. All
rights reserved.

ViewModel

Composable Function

Text composable is observing the

mutableStateOf instance (name)

Update Sequence

1. Data is changed in mutableStateOf

instance

2. Notifications are sent out to all observers

of that mutableStateOf instance

If the name is changed a notification will be sent out

causing a recomposition of the composable that is

observing it

Text Composable
(viewModel.name)

var name
mutableStateOf

Simple ViewModel Subclass
(simple)

 Create a ViewModel subclass.

 This simple version does not take any parameters.

 Note: Parameters will be passed into the ViewModel when
incorporating it in a more layered architecture (upcoming slides
describe this).

import androidx.lifecycle.ViewModel

class MainScreenViewModel : ViewModel() {

 var name by mutableStateOf("")

}

© 2024 Arthur Hoskey. All
rights reserved.

Variables and methods for data

you want to store for the

composables go here

Since name is mutableStateOf, whenever its value changes,

any composables that use it will be recomposed

Associate ViewModel and
Composable (simple)

Associate ViewModel and Composable (simple)

@Composable

fun mainScreen() {

 val viewModel = viewModel { MainScreenViewModel() }

 Text(viewModel.name)

 // Other composable code for GUI goes here…

}

© 2024 Arthur Hoskey. All
rights reserved.

Get the ViewModel class instance

(simple version just uses the

default constructor, no

dependencies injected)

Use the name variable from

the ViewModel class in the

Text composable

Any updates to the name variable on the ViewModel

will cause a recomposition of the Text composable

Getting a ViewModel Instance

Gettting a ViewModel Instance

 The ViewModel instance should only be created once (not
every time there is a recomposition.

 The following ways will work (only created once):

val viewModel = viewModel {MainScreenViewModel() }

 OR

val viewModel : MainScreenViewModel = viewModel()

 OR

val viewModel = viewModel< MainScreenViewModel >()

 The line below creates a new ViewModel for each
recomposition and could cause logic errors:

val viewModel = MainScreenViewModel()

© 2024 Arthur Hoskey. All
rights reserved.

Each of these will only

create the ViewModel

instance once no

matter how many

recompositions occur

Creating a new ViewModel instance

for every recomposition could

introduce logic errors in the app

Exposing Immutable State

Exposing Immutable State

 It is suggested to only expose immutable state to the composable functions (so
composable functions cannot directly update the view model variables).

 Just make the set for the view model's mutableStateOf variable private.

 Here is some sample code:

class MyViewModel : ViewModel() {

var num by mutableStateOf(0)

private set

fun setNum(n: Int) {

num = n

}

}

// This code is in the composable function

val viewModel = viewModel { MainScreenViewModel() }

val num = viewModel.num

Text(num.toString())

//viewModel.num = 20

© 2024 Arthur Hoskey. All
rights reserved.

Make set private on the

mutableStateOf variable

Use the view model num

member variable.

This function can use the set because

it is a member of the class

This will not work because num's

set is private in the view model

AndroidViewModel Base Class

Create AndroidViewModel Subclass

 A view model class can inherit from AndroidViewModel instead of
ViewModel.

 The AndroidViewModel class stores the Application instance for the app.

 The subclass must take an Application instance as a parameter and pass
it to AndroidViewModel.

 AndroidViewModel is useful if code needs something from the Application
instance such as the context.

 For example, Preferences Datastore needs the context so if you were
using it inside a view model the application should be passed in.

import androidx.lifecycle.AndroidViewModel

class MyViewModel(application:Application)

 : AndroidViewModel(application)

{

 // Other view model code goes here

}

© 2024 Arthur Hoskey. All
rights reserved.

The MyViewModel

subclass constructor

takes the application as

a parameter and passes

it to AndroidViewModel

Getting AndroidViewModel
Instance

Gettting AndroidViewModel Instance

 The following code should be run from a composable function.

val context = LocalContext.current

var viewModel = viewModel {
MainScreenViewModel(context.applicationContext as Application)}

© 2024 Arthur Hoskey. All
rights reserved.

Get the application from the current context

and pass it to the view model constructor.

The as keyword is being used because the

applicationContext variable needs to be

treated as an Application instance.

Get the current context

Higher-Level Architecture

 Now on to higher-level architecture using
ViewModels and repositories…

© 2024 Arthur Hoskey. All
rights reserved.

High-Level Architecture

High-Level Architecture

 Use a layered high-level architecture.

 In general, changes to the app will be less invasive in a layered
architecture.

 The code related to the UI will not be mixed with the code that stores the
app's data.

 The UI makes calls into the data layer.

 The data layer has no knowledge of the UI layer.

© 2024 Arthur Hoskey. All
rights reserved.

UI Layer

(screens and ViewModels)

Data Layer

(repository and data sources)

High-Level Architecture

High-Level Architecture

 Each screen composable should have its own ViewModel associated with it.

 ViewModels should get the data they need from a repository.

 The repository is the single source of truth for the app's data.

 Repositories access different data sources (Firestore, Room DB, File, API, etc..)

© 2024 Arthur Hoskey. All
rights reserved.

DetailScreen
ViewModel

Repository
(holds the app's data)

ListScreen
ViewModel

ListScreen
Composable

DetailsScreen
Composable

AnotherScreen
ViewModel

AnotherScreen
Composable

Data Source
(Room DB)

Data Source
(FireStore)

Data Source
(API, file, etc..)

UI Layer

(screens and

ViewModels)

Data Layer

(repository

and data

sources)

Data Layer - Repository

Data Layer - Repository

 A repository is meant to be a common access point to retrieve any data
that the app might need (it exposes data to the rest of the app).

 This is an implementation of a Single Source of Truth architecture (SSOT).

 A repository will access one or more data sources to get the data it needs
(Firestore, SQLite, some web API, file, etc…).

 Details about exactly how the data is stored are hidden from the UI layer.

 Some content take from:
https://developer.android.com/topic/architecture/data-layer

© 2024 Arthur Hoskey. All
rights reserved.

Repository
(holds the app's data)

Data Source
(Room DB)

Data Source
(FireStore)

Data Source
(API or file)

Repository

Layer

https://developer.android.com/topic/architecture/data-layer

Data Layer – Data Source

Data Layer – Data Source

 Each data source class should work with only one source of data.

 A source would be a Room DB, Firestore, network API, file, etc…

 The repository interacts with the data sources.

 Other parts of the app should never access a data source directly
(they should go through the repository).

 Some content take from:
https://developer.android.com/topic/architecture/data-layer

© 2024 Arthur Hoskey. All
rights reserved.

Repository
(holds the app's data)

Data Source
(Room DB)

Data Source
(FireStore)

Data Source
(API or file)

Data Source

Layer

https://developer.android.com/topic/architecture/data-layer

Dependency Injection

 Now on to dependency injection…

© 2024 Arthur Hoskey. All
rights reserved.

Injection

Injection

 An injection (often and usually referred to as a "shot" in US
English, a "jab" in UK English, or a "jag" in Scottish
English and Scots) is the act of administering a liquid, especially
a drug, into a person's body using a needle (usually a hypodermic
needle) and a syringe.

 This definition was taken from:
https://en.wikipedia.org/wiki/Injection_(medicine)

 Pic taken from: https://www.homage.com.my/health/injection/

© 2024 Arthur Hoskey. All
rights reserved.

https://en.wikipedia.org/wiki/US_English
https://en.wikipedia.org/wiki/US_English
https://en.wikipedia.org/wiki/UK_English
https://en.wikipedia.org/wiki/Scottish_English
https://en.wikipedia.org/wiki/Scottish_English
https://en.wikipedia.org/wiki/Scots_Language
https://en.wikipedia.org/wiki/Drug
https://en.wikipedia.org/wiki/Hypodermic_needle
https://en.wikipedia.org/wiki/Hypodermic_needle
https://en.wikipedia.org/wiki/Syringe
https://en.wikipedia.org/wiki/Injection_(medicine)
https://www.homage.com.my/health/injection/

Dependency Injection

Dependency Injection

 An object is given other objects that it requires to do its work.

 For example, a ViewModel needs access to a repository to do its work.

 A repository instance should be "injected" into the ViewModel (do not
create the repository instance inside the ViewModel).

 Just add a repository as a parameter to the ViewModel constructor (the
repository will be "injected" into the ViewModel via the constructor).

 The ViewModel can now call into the repository.

 Pic taken from: https://www.istockphoto.com/vector/sketch-icon-syringe-
gm1021808098-274385908

© 2024 Arthur Hoskey. All
rights reserved.

Repository Instance

ViewModel Instance

The repository is

"injected" into a

ViewModel

instance

https://www.istockphoto.com/vector/sketch-icon-syringe-gm1021808098-274385908
https://www.istockphoto.com/vector/sketch-icon-syringe-gm1021808098-274385908

Inject Repository into ViewModel

Inject Repository into ViewModel

 A ViewModel needs to have access to the repository.

 When the ViewModel instance is created the repository will be passed in as a
parameter to the constructor.

 Write methods on the ViewModel that will access the repository and return the data.

class MyViewModel(var myRepository: Repository) : ViewModel()

{

 fun getEmployeeData() : List<Employee> {

 return myRepository.getEmployees()

 }

 // Write other functions as necessary to access data

}

class Repository (

 // Repository parameters here

) {

 fun getGetEmployees() : List<Employee> { // Function code here }

}

© 2024 Arthur Hoskey. All
rights reserved.

Pass the Repository as

a parameter to the

ViewModel constructor

Sample ViewModel function to

access repository data (assumes

that getEmployees is a member

function of the repository class that

returns a list of employee)

Repository class snippet. It has a function

to return a list of Employee as a member

Inject Data Source into Repository

Inject DataSource into Repository

 A Repository needs to have access to the data source(s).

 When the Repository instance is created the data source will be passed in as a
parameter to the constructor.

 Write methods on the Repository that will access the data source and return the
data.

class Repository (

 var myDataSource: MyDataSource

) {

 fun getEmployeeData() : List<Employee> {

 return myDataSource.getEmployees()

 }

 // Write other functions as necessary to access data

}

class MyDataSource (

 // Data source parameters here

) {

 fun getGetEmployees() : List<Employee> { // Function code here }

}

© 2024 Arthur Hoskey. All
rights reserved.

Pass the data source(s) as parameter(s) to the

Repository constructor. If there are multiple

data sources, then pass them all here.

Sample Repository function to

access a data source

Data source class snippet. It has a function

to return a list of Employee as a member.

The code that is in here will depend on

where the data is coming from (Room DB,

Firestore, file, API, etc…)

Data Source Implementations

DataSource Implementations

 The specific code in a data source will vary according to where the data is stored.

 Code that uses the repository is unaware of internal details of the data source(s).

 In the code below, all the data sources return a List<Employee>. Using this setup,
one data source can easily be swapped out for another in the repository.

class RoomDBDataSource (// Data source parameters here) {

 fun getGetEmployees() : List<Employee> { // Code specific to getting data from a Room DB }

}

class FirestoreDataSource (// Data source parameters here) {

 fun getGetEmployees() : List<Employee> { // Code specific to getting data from a Firestore DB }

}

class FileDataSource (// Data source parameters here) {

 fun getGetEmployees() : List<Employee> { // Code specific to getting data from a normal file }

}

class NetworkAPIDataSource (// Data source parameters here) {

 fun getGetEmployees() : List<Employee> { // Code specific to getting data from a network API }

}

© 2024 Arthur Hoskey. All
rights reserved.

Repository Creation

Repository Creation

 One place to create the repository is in the app's Application class.

 The Application class can be accessed from anywhere in the app.

 Do the following:

1. Create your own Application class (say MyApp). Add a repository type
member variable as a companion object of your Application class (call it
myRep).

2. Add a function override for Application.onCreate in your Application class.
Application.onCreate gets called only once so we can create the
repository instance here (for example, put the new repository instance in
myRep).

3. Register the name of your Application class (MyApp) in
AndroidManifest.xml

4. Getting the repository instance. Your ViewModel class can now access the
repository instance through the MyApp class. For example,
MyApp.myRep.

© 2024 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2024 Arthur Hoskey. All
rights reserved.

	Slide 1: BCS 371 Mobile Application Development I
	Slide 2: Today’s Lecture
	Slide 3: mutableStateOf and remember
	Slide 4: mutableStateListOf
	Slide 5: State Hoisting
	Slide 6: State Hoisting
	Slide 7: State Hoisting
	Slide 8: State Hoisting Example - Text
	Slide 9: State Hoisting Example - TextField
	Slide 10: ViewModel
	Slide 11: ViewModel
	Slide 12: ViewModel – Gradle Dependencies
	Slide 13: ViewModel Overview
	Slide 14: Observe mutableStateOf Variable
	Slide 15: Simple ViewModel Subclass (simple)
	Slide 16: Associate ViewModel and Composable (simple)
	Slide 17: Getting a ViewModel Instance
	Slide 18: Exposing Immutable State
	Slide 19: AndroidViewModel Base Class
	Slide 20: Getting AndroidViewModel Instance
	Slide 21: Higher-Level Architecture
	Slide 22: High-Level Architecture
	Slide 23: High-Level Architecture
	Slide 24: Data Layer - Repository
	Slide 25: Data Layer – Data Source
	Slide 26: Dependency Injection
	Slide 27: Injection
	Slide 28: Dependency Injection
	Slide 29: Inject Repository into ViewModel
	Slide 30: Inject Data Source into Repository
	Slide 31: Data Source Implementations
	Slide 32: Repository Creation
	Slide 33: End of Slides

